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e (Case summary
* Flow solver
e Simulation details
* Results
— Biconvex wind-tunnel model
— NASA C608 low-boom demonstrator

e Summary
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Case Summary

* Both workshop cases were
considered in this work

— Biconvex 9x7 shock-plume
interaction wind-tunnel model

— NASA C608 low-boom flight

Biconvex shock-plume interaction

demonstrator wind-tunnel model

e (Cases were run to committee
specifications

* Nearfield signatures extracted
using provided Tecplot macro

NASA C608 low-boom
flight demonstrator
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Flow Solver: UNS3D ” Engineering

* In-house Reynolds averaged Navier—Stokes solver?
— Edge-based finite volume method

— Roe’s upwind convective flux algorithm with Harten entropy
correction

— Second-order spatial and temporal accuracy

— Gradient reconstruction by least-square with QR decomposition
— Time integration by four-stage Runge-Kutta

— Menter’s k—w SST turbulence model

 UNS3D has been successfully used to predict nearfield flow for low-
boom configurations considered in previous workshop3-°
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Flow Solver: UNS3D (Cont.) , Engineering

* Piecewise linear reconstruction used to achieve second-order spatial
accuracy

— Requires use of solution limiters to prevent un-physical flow features
* Multiple limiters were exercised for comparison purposes

— Venkatakrishnan®

— Modified Venkatakrishnan’

— Dervieux’
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* High-performance parallel, distributed memory computing resources
from Texas A&M University and NASA were used in this work

— lvy Bridge HECC Nodes were 1.5 times faster than TAMU nodes

Texas A&M Average Fine
Intel Xeon | Cores: min/max | Mesh Run Time

NASA HECC Nodes
Broadwell lvy Bridge
Biconvex X 84/336 1 Day
C608 X X 336/1680 8 Days
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* Workshop provided grids were used in this work
— Mixed-element grids only

Biconvex wind-tunnel grids used NASA C608 grids used
Name | Scale | #Nodes | #Elements [ Name | Scale | #Nodes | _#Elements.
Mixed-157 1.57 846,227 3,480,369 Mixed-128 1.28 11,782,783 29,824,790

Mixed-128 1.28 1,576,352 6,984,508 Mixed-100 1.00 20,701,451 50,028,335
Mixed-100 1.00 3,286,221 16,027,527 Mixed-080 0.80 34,879,443 82,274,480
Mixed-064 0.64 50,215,130 122,651,312
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Flow Solver Convergence
Biconvex Wind Tunnel Test Case

* Convergence criterion

— Primary: 5 order drop in flow
residual magnitude

— Secondary: stabilization of body
forces

 Each case setup to run 100,000
iterations

* Flow residuals achieved roughly 4
order drop in magnitude before
convergence stalled

* Deemed converged based on body
force histories
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Energy Equation Residual Magnitude

0.51

—s=— Dervieux Limiter
—e— Venkatakrishnan Limiter
—— Modified Venkatakrishnan Limiter
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Figure: Typical flow and drag convergence, taken from fine mesh
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Biconvex Wind Tunnel Test Case

* Both limiters produce a qualitatively similar result
— Venkatakrishnan result show more pronounced flow features

* Modified Venkatakrishnan solution nearly identical to standard limiter
solution
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Department of Aerospace Engineering 3rd AIAA Sonic Boom Prediction Workshop




TEXAS A&M UNIVERSITY
Fine Mesh Pressure Gradient Magnitude “"—F" Engineering
Biconvex Wind Tunnel Test Case

Dervieux Limiter Venkatakrishnan Limiter
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Biconvex Wind Tunnel Test Case ’

0.03
* Dervieux solutions exhibited most oo Limitor
sensitivity to grid size
— Most evident at local signature
extrema
0.00

Venkatakrishnan Limiter

* Venkatakrishnan solutions overshot
average experiment values at local ¢
extrema g.

— Modified limiter produced nearly
-0.03

identical nearfield signatures as
standard limiter
Experiment (Sig. 79)

e Current solutions are qualitatively
similar to published CFD predictions? —— UNS3D: Mixed 157
—e— UNS3D: Mixed 128

0.06 —— UNS3D: Mixed 100 ‘ ‘
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X/L
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Biconvex Wind Tunnel Test Case

* Predicted nearfield pressure showed good agreement with experiment
data at all three measured azimuth angles
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NASA C608 Low-Boom Demonstrator

-3 — x x x ; ; 0.185

-

* Convergence criterion

— Primary: 5 order drop in flow
residual magnitude

— Secondary: stabilization of body
forces

* Dervieux limiter solutions achieved
convergence on all but finest grid
tried

* Venkatakrishnan limiter solution
exhibited unsteady flow properties

— Only able to obtain solution on | | | | | e
coarsest mesh 0 50 100 150 200 250 300

Thousands of lterations

—s=— Dervieux Limiter
—e— Modified Venkatakrishnan Limiter
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Figure: Flow and lift coefficient convergence from coarse mesh
simulations.
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NASA C608 Low-Boom Demonstrator "

* Venkatakrishnan limiter results in sharper representation of shocks and
salient flow features

— Introduces less dissipation than Dervieux limiter
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NASA C608 Low-Boom Demonstrator

0.008 -~ O 128: Modified Venkatakishnan
B \ Grid 100: Dervieux
* Coarse Venkatakrishnan solution 0-006 - [PV
shows a number of small amplitude  oo0sf
features 5

* Dervieux solutions on coarser grids
followed general trend of
Venkatakrishnan solution

— Flow features in forward portion 0004
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* Large residuals located surface
adjacent to:

— Control surface gaps
— Engine inlet mouth

— Discontinuous surface
feature

e Location of max residual sat in
vicinity of discontinuous
surface feature

— Occasionally jumped to
elevator gap location
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Primary Max Residual Location

 Backwards facing step with a
surface “singularity”

\ <\§E Pm,v

il

st

*§§‘§4§‘$‘V‘Mﬁ‘w‘w
AR
NG
O
il

Department of Aerospace Engineering

(M"

4
1.00E-03
7.94E-04
6.31E-04 |
5.01E-04 f§

3rd AIAA Sonic Boom Prediction Workshop




Mixed-064 Dervieux C608 Divergence ’ Engineering

e Solution diverges in early stages of
simulation on finest grid tried

* Location of divergence found inside
engine inlet region

* Associated with set of highly-skewed
cells in prism/tet transition zone
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Mixed-064 Dervieux C608 Divergence (Cont.) , Engineering

* Elements skewness equiangle £ 0.95 in vicinity of divergence
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* Nearfield pressures predicted for biconvex shock-plume interaction
model found to be in good agreement with published experimental data

* Use of a dissipative limiter was required to achieve convergence on
three coarsest NASA 608 grids

— Geometry simplification and strategic surface grid clustering could
improve convergence in viscous dominated regions of flow

e Solution limiter study showed all three limiters tested produced
solutions with good qualitative agreement

— Dervieux limiter required a finer mesh to capture the lower
amplitude features found in the nearfield pressure signatures
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Questions?

Thank you for your attention!
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NASA C608 Low-Boom Demonstrator
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